

Question number	Answer	Notes	Marks
2 (a)	2 value line with top line \& lower line at constant heights; straight up/down lines; e.g. typical 'top hat' waveform any two described advantages from:- MP1. information density e.g. digital carry more information (per second); MP2. quality e.g. maintain quality over longer distances; MP3. easier to reduce noise/less affected by noise; MP4. regeneration e.g. able to boost signal to original strength;	ignore spacing of pulses judge by eye allow waveform with 3 distinct values at $+X$, zero and - X accept clearer easier to process total marks $=4$	2

Question number			Answer	Notes	Marks
3	a	i	number of waves/cycles = 3.5; $\frac{0.60}{3.5}=0.17(\mathrm{~m})$	```3.5 seen or implied 0.1714 (m) 17 cm 17.14 cm For 1 mark only 17 (m), 17.14(m), 0.2 (m), 0.15 (m), 0.085 (m)```	2
		ii	wave speed $=$ frequency \times wavelength	allow words or accepted symbols and rearrangements	1
		iii	substitution; rearrangement; evaluation; eg. $3.0 \times 10^{8}=0.17 \times \mathrm{f}$ (1 mark) $3.0 \times 10^{8} / 0.17$ (2 marks) $1.8 \times 10^{9}(\mathrm{~Hz})$ $(3$ marks)	allow ecf from ai $\begin{aligned} & 1.76 \times 10^{9}(\mathrm{~Hz}) \\ & 1.75 \times 10^{9}(\mathrm{~Hz}) \\ & \text { POT }=-1 \end{aligned}$	3
	b	i	diffraction;		1
		ii	any two from: MP1. microwaves not diffracted as much; MP2. diffraction (only seen) when size of barrier/gap comparable to wavelength; MP3. radio-waves have (much) longer wavelength than microwaves/RA;	must have quantifier-e.g 'little' ignore 'microwaves not diffracted' wavelength of microwaves (much) smaller than size of barrier allow an implied comparison	2
				total $=9$ marks	

Question number	Answer	Notes	Marks
4(a) (i) (ii)	A - amplitude; B - frequency;		1 1
(b) (i)	Any of e.g. Light, (any named) electromagnetic wave, water waves, S(econdary) seismic waves;	Allow - slinky if described correctly - wave on a string Ignore 'heat waves'	1

			Answer		Notes	Marks
			B;			1

(ii)	Attempt to find slope or gradient of line ; AND evaluation of value; matching unit; $\begin{aligned} & \text { e.g. } \\ & =0.6 / 0.0018 \\ & =333 \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$	```\Delta seen or two lines from same axis seen or rise/run seen value in range of 310-350 allow 0.333 km/s 0.333 m/ms```	3
(iii)	Any one specific variable from the experiment; e.g. hitting the block in the same place Use the same microphone/timer/wires Ensure there is no 'hammer bounce'	These must be specific to the experiment Accept same - temperature - humidity - density - draughts - force - block ignore - 'keep everything the same' - use control variables - repeat experiment	1
(iv)	Any 2 suggestions from MP1. repeat the time readings (for each distance); MP2. measure the distance to the sensor of the microphone; MP3. use wider range of distance readings (<0.62 or >1.38); MP4. use intermediate distances (between points);	ignore imprecise suggestions e.g. - 'be careful with timer' - 'change the distance'	2

Question number	Answer	Notes	Marks
6 (a)	standard definition of wavelength; e. • distance between two points on a wave/ two peaks/ two troughs distance between each wavefront - distance travelled by wave in one time period	allow: from clear diagram crest for peak	1

Question number	Answer	Notes	Marks
6 (ci)	Diffraction; And one of	allow: - diffraction seen in (cii) - recognisable spelling for 'diffraction'	
	- The incoming wave spreads out at the gap; - The energy carried by the wave spreads out ;	ignore: - the wave gets bigger - wave is bent - (wavefront is) curved	
6 (cii)	idea that (diffraction only apparent when) λ and size of gap comparable/RA; wavelength of light is very small / smaller than water waves /smaller than the gap;	Allow RA	
			2
		Total	8

Question number	Answer	Accept	Reject	Marks
7 (a) (i)	$3 ;$	Three $/ 3.0$		
(ii)	$0.002(\mathrm{~s}) / 2 \underline{\mathrm{~ms}} ;$	(correct answer without working for 2 marks	2	
(b)	All of waves at smaller amplitude (can vary); All of complete waves at higher frequency (can vary);	Any wave form Accept two diagrams that clearly show the candidate's intention		

Total 5 marks

Question number	Answer	Notes	Marks
8 (a)	idea that higher frequency gives higher pitch;	allow reverse argument condone idea of proportionality / linearity	1
(b) (i) (ii)	(wave) speed $=$ frequency \times wavelength substitution into correctly rearranged equation; evaluation; e. $\begin{aligned} & (v=) 340 / 160 \\ & (v=) 2.1(\mathrm{~m}) \end{aligned}$	allow abbreviation, e. $v=f \times \lambda$ or rearrangements allow 2.125, 2.12, 2.13 or 2 (if supported)	1 2
(c) (i) (ii)	straight line of best fit drawn within indicated area; line of best fit extended to $20^{\circ} \mathrm{C}$; student's own value from graph \pm half a square;	line does not need to be extended beyond data range for this mark	1

(d)	any 2 from: MP1. speed (of sound) decreases (with temperature); MP2.frequency is constant; MP3. so wavelength decreases (with temperature);	allow 'sound slows down' ignore references to particle speed	2

Question number			Answer	Accept	Reject	Marks
9	(a)	(i) (ii)	(Signal has) two values; Only; Any two of The idea of increased frequency (of wave or modulation); The idea of regeneration (allowing more data to arrive); The idea of using increased bandwidth; The idea of using additional (signal) level; The idea of multiplexing (e.g. use more than one channel);	On or off, 0 or 1, two signal strengths Binary send more bits/sparks, send morse code more quickly, send other letters The response should be about the signal, so ignore: idea of just sending a longer message using optical fibre(s)		2 2
	(b)	(i) (ii)	```(wave) speed = frequency }\times\mathrm{ wavelength Substitution; Calculation; e.g.: }820000\times36 = 300 120000 or 300 000 000 or 3 x 108 (m/s)```	$\begin{aligned} & \mathrm{v}=\mathrm{f} \times \lambda \text { (accept } \\ & \text { rearrangements) } \\ & \text { Bald answer;; } \\ & \text { Power of ten error (for } \\ & 1 \mathrm{mark} \text {) e.g. } 300000 \\ & \mathrm{~m} / \mathrm{s} \\ & \text { Alternative correct } \\ & \text { units (for } 2 \frac{\mathrm{marks} \text {) e.g. }}{300000 \mathrm{~km} / \mathrm{s}} \\ & \hline \end{aligned}$		1 2

| Question
 number | Answer | A | Reject | Marks |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 9 | (c) | 183 (m); | | 1 |
| (d) | Any three of:
 MP1 Electrons move OR there is a current Or
 negative charge moves;
 MP2 (Discharge) to earth OR across cloud OR to
 named object - tree, house, lightning conductor;
 MP3 Air conducts;
 MP4 Phenomenon e.g. thunder clap / lightning; | Sparks generate radio
 waves;
 Lightning causes
 (radio) interference;
 Correct reference to
 electrostatic attraction
 repulsion ; | 3 | |

Question number	Answer	Notes	Marks
10 (a)	D		1
(i) (ii)	C		1
(b)	f=1/T (NO MARK) f=1/5; $0.2(H z) ;$	Bald $0.2(\mathrm{~Hz})$ scores 2 marks	2

